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ABSTRACT: 
The analysis presented here is to study the damping effect on thermal vibrations of an isotropic elastic 

circular plate of uniform thickness.  The frequencies, deflections, and moments corresponding to first four 

modes of vibration have been computed for the two combinations of boundary conditions, clamped (C) and 

simply supported (SS) and various values of thermal gradient and damping parameter by applying the 

method of Frobenius for the solution of the governing differential equation of motion. 

   

KEY WORDS:  

Young modulus, Thermal gradient, Damping parameter, Frequency parameter, Deflections and Moments 

 

1. INTRODUCTION: 

The damping effect can be large enough to check the vibrations to produce of any appreciable effect on 

frequency as well as amplitude of vibrations. In recent years, interest in the effect of temperature on solid 

bodies has highly increased because of rapid developments in space technology.  In these problems, the 

thermal dependence of frequency of plates of different shapes is of great importance and designing many 

scientific devices.   The effect of temperature on the modulus of elasticity of materials is far from negligible, 

especially in the design of aircrafts and rockets in which certain parts have to operate under elevated 

temperatures.   The first comprehensive collection of solutions for circular plate of uniform thickness has 

been presented by Airey [1] in 1911.  The vibrations of circular plates of variable thickness have been 

studied by many authors   [2, 3, 4, 5].    Tomar and Tiwari [6] have studied the effect of linearly transient 

temperature field on frequencies of an isotropic circular plate of linearly varying thickness.  Recently, Tomar 

and Gupta [8, 9] considered the effect of harmonic and linearly temperature variations on axisymmetric 

vibrations of orthotropic circular plates of variable thickness respectively. The object of this study is to 

determine the effect of the parabolic temperature distribution on the frequencies of an isotropic circular plate 

of uniform thickness with damping effect.   The differential equation of motion is solved by Frobenius 

method.  The frequency parameters, deflections and moments corresponding to the first four modes of 

vibration for clamped as well as simply-supported plates have been computed for various values of damping 

parameters and temperature gradients with constant Poisson's ratio.  The numerical results have been 

presented in graphical forms and compared with Jain [3].    The present investigations are  helpful in 

designing many scientific devices where uniform  structures are exposed to high intensity heat fluxes due to 

which the material properties undergo significant change in vibrations.  

 

2. ANALYSIS: 

 The plate material is assumed to be subjected to a parabolic temperature distribution (in R-direction) is 

given by along the length. 

 T = T0 (1-R2)        ..... (1) 
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Where T and T0 denotes the temperature excess above the reference temperature at any point R and at the 

end R = 0 respectively. 

The temperature dependence of the modulus of elasticity for most of the enginering materials is given by                                              

[10, 11, 12], therefore, one can have 

 

     T1ETE 0           … (2)   

Where  is the modulus of elasticity of the material at the reference temperature i.e. at T = 0 and  is a 

constant. 

Taking the reference temperature, the temperature at R=1, the modulus variation becomes  

        2
0 R11ERE      ..... (3) 

Where  ,10,T0   a parameter known as temperature gradient, and  is an arbitrary constants.  

The governing equation of motion in non-dimensional variables is given by 
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Using equation (3), equation (4) reduces to 
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3. SOLUTION: 

The harmonic damped vibration is considered  

    ptCoseRWt,RW rt                     .....(6) 

Imposing the equation (6) on equation (5) the result is. 
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Where, p is the circular frequency , r is the frequency parameter and Dk  is the damping parameter.   

A series solution for  is assumed in the form  
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Where C is the exponent of singularly. If the series expression (8) is substituted into the equation (7), one 

obtains  
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For the series expression (8) to be the solution, the coefficients of the powers of R in the equation (9) must 

be identically zero.  Thus, by equating to zero the coefficient of the lowest power of R , the following 
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indicial roots are obtained : C=0, 0, 2, 2.  Equating to zero the coefficient of the next higher power of R, one 

finds that a1=0 =a3and a2 is indeterminate for C = 0,  Hence a2 can be written as an arbitrary constant along 

with a0. Similarly equating to zero 

 the coefficient of other higher power of R . The remaining constants   ..........7,6,5,4a   are 

determined from the recurrence relation : 
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Where,  VandU are the functions of  andI,D,v, *
k .   It is evident that no new solution will arise 

corresponding to other values of C i.e. for C=2, as it is already contained in the solution (12) with the 
arbitrary constants a0 and a2. Using the technique used by Lamb [7] to test the convergence, one finds that 

the solution (12) is uniformly convergent   in the interval 1where,1R0  . Hence the solution is 
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4. BOUNDARY CONDITIONS AND FREQUENCY EQUATIONS: 

The frequency equations for clamped and simply supported circular plates have been obtained by employing 

the appropriate boundary conditions : 

 

CLAMPED PLATE: 

 For a circular plate clamped at the edge r = a, the deflection W and the slope of the plate element at 

the edge should be zero. 
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Using equation (12) and boundary conditions (13) one gets  
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Eliminating the unknown constants  a0 and a2, one obtains the frequency equation for clamped  plate as : 
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SIMPLY SUPPORTED PLATES: 
For a circular plate simply supported at the edge r=a, the deflection W and the moment Mr at the edge should 

be zero  
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Again using equation (12 )and boundary conditions (15) one gets :  i.e.   
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Eliminating the unknown constants a0 and a2, one obtains the frequency equation for simply supported plate 

as: 
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5. DEFLECTION FUNCTION AND MOMENTS:   

 

Using the boundary condition at R = 1 and taking a0 = 1, in equation (12)  one obtains : 
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Again using the boundary condition W  = 0 at R =1 and taking a0 = 1, we obtained the   non-dimensional 

moment parameter equation.  

 

6. RESULTS AND DISCUSSION: 

 Numerical results for an isotropic, elastic circular plate have been computed from the equations (14), (16), 

(17) and (18) when the temperature field varies as parabolically.    In all the cases ,  the Poisson’s ratio has 

been taken to  be 0.3 and  terms of  the series upto an accuracy of   in their absolute values have been 
retained.  If the    η = 0=  DK are considered , the results so obtained are in good agreement with the results 

obtained by Jain [ 3 ].    The results for an isotropic elastic circular plate of uniform thickness have been 

computed for four modes.   However the results of first two modes have been shown in the figures.  It is 

observed (fig. 1and 2) that the frequency Ω decreases with the increase of damping parameter  DK  for 

heated as well as unheated (η = 0) plates.   For higher values of   DK  the fall in frequency  parameters Ω is 

very sharp  repidly specialy for simply supported edge conditions when the values of  η is higher( for 3&4 

mode).  Furthermore, the frequencies of heated plates are lower than that of unheated(η = 0 ) one in both the 

cases of boundary conditions . Observation form fig. 3 and 4 the values of Ω decreases with the increase of 

thermal gradient η in both the cases of boundary conditions. It is also noted that the transverse displacements 

 are less for simply supported plate than that for clamped plate for all the four modes of vibrations. The 

frequency parameters Ω for clamped-plates is higher than the corresponding to simply supported -plates for 

all the four modes.  The deflection function  and moment parameters  have been computed for heated 

and damped plates with clamped and simply supported edge conditions corresponding to the first four modes 

of vibration have been plotted in figures 5 and 6 respectively. It’s clear from graph the  are less for simply 

supported plates than that for clamped plate for all the four modes of vibrations.  
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Fig. 1: Variation Of Frequency  Parameter 'Ω’  'With  Damping  Parameter ‘ Dk'  For  A Circular  Plate  

Corresponding  To  First Mode Of  Vibration  Under  The  Parabolic  Thermal Gradient ' Η ' .   

  LEGEND: H=0.1, ν = 0.3,  C = Clamped , SS = Simply Supported 
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Fig. 2: Variation  Of  Frequency  Parameter  'Ω’ With  Damping  Parameter ‘ Dk'  For  A Circular  Plate  

Corresponding  To  Second  Mode  Of  Vibration  Under  The  Parabolic  Thermal Gradient ' Η ' .   

 LEGEND: H=0.1,  ν  = 0 .3,  C = Clamped , SS = Simply Supported 
 

  
 

 

Fig. 3: Effect Of Parabolic Thermal Gradient  ' Η ‘ On The Frequency Parameter ''Ω’  Of  A Circular 

Damped Plate Corresponding To First Mode Of Vibrations. 

LEGEND: =0.1, ν = 0.3,  C = Clamped , SS = Simply Supported 
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Fig. 4: Effect Of Parabolic Thermal Gradient' Η ‘ On The Frequency Parameter  ‘Ω' Of A Circular 

Damped Plate Corresponding To Second Mode Of Vibrations. 
LEGEND: H=0.1, ν = 0.3,  C = Clamped , SS = Simply Supported 
 

 
 

Fig. 5: Transverse Displacement  'Ŵ' At Different Point’s Of An Circular Damped Plate For The  

First Four Modes Of Vibrations Under The  Parabolically  Temperature Field 

LEGEND: H=0.1,ν   = 0.3,  η = 0.1   C = Clamped , SS = Simply Supported 
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Fig. 6: Moment Parameters  'M' At Diferrent Point’s Of An Circular Damped Plate For The First 

Four Modes Of Vibrations Under The  Parabolically  Temperature Field 
LEGEND: H=0.1,ν   = 0.3,  η = 0.1   C = Clamped , SS = Simply Supported 
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